95 research outputs found

    A kinetic study of the complete oxidation of ethene, propane and their mixtures on a Pd/Al2O3 catalyst

    Get PDF
    The complete oxidation of ethene and propane as individual hydrocarbons and of their mixtures on a Pd/Al2O3 catalyst has been studied using an internal recycle reactor. The pressure was varied from 1.6¿5 bar and the temperature from 180¿220 °C for ethene oxidation and from 280¿330 °C for propane oxidation. The maximum hydrocarbon concentration was ca. 3000 ppm or 0.3vol.%. The effect of the reaction products and the co-educt on the kinetics was investigated and it is shown that whereas water significantly retards the oxidation, the influence of CO2 is negligible. Propane oxidation is inhibited by ethene. Such inhibition can only partly be explained by the additional water formed due to the combustion of ethene. The conversions in these experiments studied ranged between 70% and 90% for ethene and between 15% and 30% for propane, respectively. Four different rate expressions have been tested bearing in mind that the influence of water must be taken into account in any adequate description of the experimental data. The best-fitting rate expression described the experimental data to within an average error of 17% for ethene and 13% for propane, respectively. A comparison of the results with data from dynamic experiments showed a reasonable agreement

    The catalytic oxidation of organic contaminants in a packed bed reactor

    Get PDF
    The catalytic oxidation of several hydrocarbons was studied over noble metal and metal oxide catalysts. A fast empirical method was developed to determine the minimum operating temperature required to guarantee complete conversion of the hydrocarbon.\ud \ud The influence of the operating parameters such as the inlet concentration and residence time, as well as the chemical character of the component to be oxidized, have been investigated. The results can be described satisfactorily by a simple isothermal, plug flow reactor model and first-order reaction kinetics. In the case of simultaneous oxidation of different components a significant mixture effect was not observed. The presence of water in the feed did significantly inhibit the oxidation of alkanes.\ud \ud Of the applied catalysts, Pt was the most effective for the combustion of the alkenes, whereas Pd showed a higher activity for the oxidation of alkanes

    Low Circulating IGF-I Bioactivity in Elderly Men is associated with Increased Mortality

    Get PDF
    Context: Low IGF-I signaling activity prolongs lifespan in certain animal models, but the precise role of IGF-I in human survival remains controversial. The IGF-I kinase receptor activation assay (IGF-I KIRA) is a novel method for measuring IGF-I bioactivity in human serum. We speculated that determination of circulating IGF-I bioactivity is more informative than levels of immunoreactive IGFI. Objective: To study IGF-I bioactivity in relation to human survival. Design: Prospective observational study. Setting: A clinical research center at a university hospital. Study participants: 376 healthy elderly men (aged 73 to 94 years). Main outcome Measures: IGF-I bioactivity was determined by the IGF-I KIRA. Total and free IGF-I were determined by IGF-I immunoassays. Mortality was registered during follow-up (mean 82 months). Results: During the follow-up period of 8.6 years 170 men (45%) died. Survival of subjects in the highest quartile of IGF-I bioactivity was significantly better than in the lowest quartile, both in the total study group (HR = 1.8, (95% CI: 1.2 − 2.8, p = 0.01) as well as in subgroups having a medical history of cardiovascular disease (HR = 2.4 (95% CI: 1.3 − 4.3, p = 0.003) or a high inflammatory risk profile (HR = 2.3 (95% CI: 1.2 − 4.5, p = 0.01). Significant relationships were not observed for total or free IGF-I. Conclusion: Our study suggests that a relatively high circulating IGF-I bioactivity in elderly men is associated with extended survival and with reduced cardiovascular risk

    Using biomass-based fuels including pyrolysis liquids for power and CHP production

    Get PDF
    The use of biomass-derived liquids (in short: bioliquids) instead of solid biomass can help overcome some of the barriers hindering a wider use of biomass in smaller-scale CHP systems. Relevant bioliquids included biodiesel, vegetable oils as well straight and upgraded pyrolysis oil. In this joint EU-Russian research project Bioliquids-CHP prime movers (engines and turbines) will be developed and modified so that these can run efficiently on bioliquids. At the same time, bioliquids will be upgraded and blended in order to facilitate their use in prime movers. Preliminary results with regard to bioliquid selection, production, and characterisation; the selection and modification of a micro gas turbine; and the development of engines and components are discussed. The research also covers NOx emission reduction and control and an assessment of the benefits and economics of bioliquids-based CHP systems in EU and Russian markets
    • …
    corecore